Monday, October 21, 2013

Monday's Molecule #220

Last week's molecule was citrate synthase, one of many enzymes that show considerable amounts of structural change during binding. It looks like the "induced fit" mechanism is a general feature of substrate binding and not something that is limited to just a few examples. That part of the question was easy but the second part was hard. Jean-Marc Neuhaus is this week's winner because he has a copy of my book and was able to look up the explanation. The important point to keep in mind when you are thinking about the thermodynamics of biochemical reactions is that most reactions are near-equilibrium reactions where ΔG = 0. In the case of the citrate synthase reaction, ΔG°′ = -31.5 kJ mol-1, in the direction of citrate formation. What this means is that the equilibrium concentrations of the products are very much higher than the concentrations of the substrates. These concentrations would be closer to being equal if the reaction was coupled to substrate level phosphorylation (e.g. ATP formation). This would be a problem since the concentration of oxaloacetate (substrate) inside the cell is very low. (Because the standard free energy change of the malate dehydrogenase reaction is ΔG°′ = +30 kJ mol-1) [Monday's Molecule #219]. Jean-Marc lives in Switzerland so I've made arrangements to fly over there to visit him and treat him to fondue at the Pinte de Pierre-à-Bot in Neuchatel.

Today's molecule is one of those molecules that students should never be asked to memorize. It's an intermediate in a very important pathway. Identify the molecule and the pathway. You have to give me the full name and the common abbreviation. Email your answer to me at: Monday's Molecule #220. I'll hold off posting your answers for at least 24 hours. The first one with the correct answer wins. I will only post the names of people with mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Read more »